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R etinopathy of prematurity is a vision-threatening disease asso-
ciated with abnormal retinal vascular development that occurs only in pre-
mature infants.1 Low birth weight and prematurity are strongly associated 

with an increased risk of the disease.2 In the Early Treatment for Retinopathy of 
Prematurity study, the disorder developed in 68% of premature infants born in the 
United States and weighing less than 1251 g; among infants with the disorder, se-
vere retinopathy of prematurity developed in almost 37%.1 The incidence of prema-
ture births is increasing throughout the world, and with it, retinopathy of prema-
turity is now appearing in countries with the technology to save preterm infants. 
Thus, retinopathy of prematurity has become a leading cause of childhood blind-
ness worldwide.

The management of retinopathy of prematurity is evolving. Screening and treat-
ment interventions include frequent retinal examinations of at-risk preterm infants, 
laser treatment of the peripheral avascular retina in eyes with severe retinopathy of 
prematurity, and visual rehabilitation (Table 1 and Fig. 1).1,3 In this article, we review 
our changing understanding of retinopathy of prematurity, particularly its relation to 
oxygen use4-7 (Table 28-12), and describe current, new, and potential therapies based 
on mechanistic studies in models relevant to oxygen stresses in preterm infants.

PATHO GENESIS

During the 70 years since retinopathy of prematurity was initially described by 
Terry, who used the term “retrolental fibroplasia,”4 our perspective on the condition 
has changed. We now think that the initial 1942 description may have represented 
stage 5 retinopathy of prematurity, the most advanced stage of the disease, charac-
terized by total retinal detachment. In addition, the early studies by Michaelson,5 
Ashton et al.,6 and Patz et al.,7 which examined the effects of high oxygen levels in 
newborn animal models in which the retinas normally vascularize postnatally (un-
like human infants, in whom the retina is vascularized at term but not in preterm 
births), must now be reconsidered in light of advancements in neonatal care. Al-
though these early investigators exposed animals to a high-oxygen milieu similar 
to that used in the treatment of preterm infants at the time, they did not consider 
the fact that the newborn animals they studied had healthy lung function. In addi-
tion, the oxygen levels used then differ considerably from those currently used in 
preterm infants. Ashton and colleagues reported that 70% to 80% inspired oxygen 
delivered continuously for at least 4 days in healthy kittens caused “vaso-oblitera-
tion” of the newly formed capillaries6; when the animals were returned to ambient 
air, a “vasoproliferative” effect was observed. Thus, a two-phase hypothesis of reti-
nopathy of prematurity was developed.6
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Now, with an improved understanding of the 
disorder from clinical examination and through 
the use of relevant animal models, the hypoth-
esis has been refined: phase 1 involves delayed 
physiologic retinal vascular development, and 
phase 2 involves vasoproliferation (Fig. 2). Note 
that the two-phase hypothesis was proposed 
more than 30 years before the classification of 

human retinopathy of prematurity according to 
zone and stage (Table 1 and Fig. 1 and 2).

S T UDIES of MODEL S of 
r e tinopath y of pr em at ur i t y

It is unsafe (and virtually impossible) to study 
heterotypic cell interactions and signaling events 

Table 1. Current Management of Retinopathy of Prematurity.

Criteria for screening

United States: infants with a gestational age of ≤30 weeks or birth weight of <1500 g and selected infants with a gesta-
tional age of >30 weeks and an unstable clinical course3

United Kingdom: infants with a gestational age of ≤31 weeks or birth weight of ≤1500 g

Canada: infants with a gestational age of ≤30 weeks, 6 days, or birth weight of ≤1250 g

Timing of screening and examinations

First examination at chronologic age of 4–6 weeks or postgestational age of 31 weeks

Repeated examinations recommended by examining ophthalmologist on the basis of retinal findings and suggested 
schedule3

Type of examination

Dilated binocular indirect ophthalmoscopy

Ongoing studies of validation and reliability of retinal imaging as a potential telemedicine alternative for screening by 
indirect ophthalmoscopy

Classification of retinopathy of prematurity determined in examinations

Zone (area of retinal vascularization)

I: vascularization within a circle centered on the optic nerve, the radius of which is twice the distance from the 
optic nerve to the macula

II: vascularization extending beyond zone I, within a circle the radius of which is the distance from the optic 
nerve to the nasal ora serrata

III: vascularization extending beyond zones I and II

Stage (disease severity)

1: line

2: ridge (with volume)

3: intravitreal angiogenesis

4: partial retinal detachment

5: total retinal detachment

Plus disease: dilatation and tortuosity of retinal vessels

Treatment

Application of laser to peripheral avascular retina for type 1 retinopathy of prematurity

Zone I: stage 3, or stage 1 or 2 with plus disease

Zone II: stage 2 or 3 with plus disease

Under consideration, anti-VEGF agents for stage 3 and plus disease in zone I; additional study needed to determine 
dose, safety, and type of anti-VEGF therapy*

Visual rehabilitation

Correction often needed for associated refractive errors (ametropia and anisometropia); ongoing screening and treat-
ment recommended for commonly associated amblyopia or strabismus; protective eyewear and low-vision aids 
may be indicated

* VEGF denotes vascular endothelial growth factor.
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within the human preterm retina that cause the 
biologic features of severe retinopathy of prema-
turity. Because many newborn nonhuman mam-
mals complete their retinal vascularization post-
natally, animal models were developed to test the 
role of stresses in preterm infants on the patho-
genesis of retinopathy of prematurity. The com-
mon neonatal animal models of oxygen-induced 
retinopathy use varying amounts of oxygen to ex-
amine the cellular and molecular mechanisms 
that drive the progression of pathologic changes 
in retinopathy of prematurity. All models of oxy-
gen-induced retinopathy have limitations, because 
the animals in such models are not premature. 
Nonetheless, these models have substantially en-
hanced our understanding of the pathogenesis of 
retinopathy of prematurity.

Some current models of oxygen-induced reti-
nopathy involve high levels of oxygenation, simi-

lar to those used in the 1940s when retrolental 
fibroplasia was first described. However, the 
oxygen stresses in preterm infants have changed 
greatly since those early days.4 The mouse model 
of oxygen-induced retinopathy13 is the most wide-
ly used, because genetically altered transgenic or 
knockout mice can be used to study the path-
ways involved in angiogenesis. However, the 
mouse model has limitations. First, 7-day-old 
mice are exposed to high oxygen levels continu-
ously for 5 days, which can cause a partial pres-
sure of arterial oxygen (PaO2) of 500 mm Hg or 
more.14 The Extremely Low Gestational Age New-
borns study15 tested the hypothesis that preterm 
infants who had blood gas disturbances on 2 of 
the first 3 postnatal days of life might be at risk 
for severe retinopathy of prematurity. That study 
showed that severe retinopathy of prematurity 
was more likely to develop in infants with a 

A B

DC

Figure 1. Stages of Retinopathy of Prematurity in Zone II in Preterm Infants.

The images were obtained with a neonatal retinal imaging system (RetCam, Clarity Medical Systems). Panel A 
shows a line between the vascularized and avascularized retina (stage 1). Panel B shows a ridge between the vascu-
larized and avascularized retina (stage 2). Panel C shows a thickened ridge with aberrant intravitreal angiogenesis 
(stage 3). Panel D shows partial retinal detachment (stage 4), which is most evident at the right side of the image 
where the underlying choroidal vascular detail is out of focus.
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PaO2 in the highest quartile as compared with 
the lowest quartile. However, the median PaO2
was approximately 100 mm Hg on day 1 for all 
stages of retinopathy of prematurity finally ana-
lyzed, and on subsequent days, no infant had a 
PaO2 level as high as 400 mm Hg. Second, the 

oxygen level in preterm infants fluctuates on a 
minute-to-minute basis, but in the mouse model 
of oxygen-induced retinopathy, oxygen exposure 
is constant.16 Finally, the mouse model of oxygen-
induced retinopathy causes vaso-obliteration 
(destruction of newly formed capillaries) in the 
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In retinopathy of prematurity, there is initially delayed physiologic retinal vascular development, resulting in a peripheral avascular area 
of the retina (phase 1). Later, vasoproliferation in the form of intravitreal angiogenesis can occur at the junction of avascularized and 
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central retina, followed by endothelial budding 
into the vitreous, and the retinopathy does not 
resemble that in most cases of severe retinopa-
thy of prematurity seen today (Fig. 3).

Several current models of retinopathy of pre-
maturity recreate fluctuations in oxygen tension, 
which is recognized as a risk factor for severe 
retinopathy of prematurity.16-18 The most widely 

A

998 µm

B

DC

998 µm

1001 µm

998 µm

Figure 3. Retinal Flat Mounts Stained with Griffonia Lectin to Visualize the Retinal Vasculature in Mouse and Rat 
Models of Oxygen-Induced Retinopathy.

The center of the cloverleaf is the optic nerve, and the farthest extent of each leaf of the cloverleaf is the ora serrata. 
There is no macula in the mouse or rat retina. The panels on the left show phase 1 retinopathy of prematurity, and 
the panels on the right show phase 2 retinopathy of prematurity. In Panel A, a postnatal-day (p) 12 mouse model 
shows central hyperoxia-induced vaso-obliteration after 5 days of 75% oxygen. In Panel B, a p17 mouse model after 
an additional 5 days in room air shows vasoproliferation at the junctions of the vascularized and avascularized retina. 
This model may represent retinopathy of prematurity in the United States in the 1950s or possibly in regions lack-
ing resources to provide oxygen regulation and monitoring. In Panel C, a p14 rat model shows delayed physiologic 
retinal vascular development with peripheral avascularized retina after seven cycles of fluctuations between 50% 
and 10% oxygen. In Panel D, a p18 rat model after 4 days in ambient air shows vasoproliferation at the junction of 
the vascularized and avascularized retina; this model represents retinopathy of prematurity as currently seen in the 
United States and other countries where oxygen is regulated.
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used model of oxygen fluctuations is in the rat, 
in which oxygen levels fluctuate between 50% 
and 10% every 24 hours.19 The advantage of the 
rat model is that it results in fluctuations in arte-
rial oxygen concentrations in rat pups, the ex-
tremes of which mimic measured oxygen levels 
in infants in whom severe retinopathy of prema-
turity developed.16 The rat model recreates the 
appearance of severe retinopathy of prematurity 
with delayed physiologic retinal vascular devel-
opment and subsequent vasoproliferation. The 
rat model also causes extrauterine growth re-
striction, another known risk factor for severe 
retinopathy of prematurity.20 A limitation of the 
rat model is that it is relatively difficult to ma-
nipulate the rat genome. Thus, most studies of 
oxygen-induced retinopathy in rats use pharma-
cologic methods or introduce viral vectors that 
contain nucleic acid sequences to silence or over-
express genes in order to study signaling path-
ways involved in the pathogenesis of retinopathy 
of prematurity. Despite this limitation, the rat 
model of oxygen-induced retinopathy remains 
the most clinically relevant model of retinopathy 
of prematurity, since its biologic features are 
most like those of severe retinopathy of prema-
turity in preterm infants (Fig. 3).

The development of the retinal vasculature 
in humans differs from that in many other 
mammalian species used as models of oxygen-  
induced retinopathy.21-24 Vasculogenesis in the 
human infant eye is ongoing until at least  
22 weeks of gestation.25 After that time, it is 
unknown how retinal vascularization proceeds. 
On the basis of studies in animals, vasculariza-
tion has been thought to progress by means of 
angiogenesis and the extension of existing blood 
vessels by proliferating endothelial cells that 
migrate toward a gradient of vascular endothe-
lial growth factor (VEGF).26

Thus, several reasons support revisiting the 
two-phase hypothesis regarding the pathogene-
sis of retinopathy of prematurity in terms of 
vaso-obliteration and vasoproliferation, as de-
scribed by Ashton in 1954. In human retinopa-
thy of prematurity, there is first a delay in 
physiologic retinal vascular development rather 
than vaso-obliteration, with subsequent vasopro-
liferation in some infants with severe retinopa-
thy of prematurity (Fig. 2). Therefore, the de-
layed physiologic retinal vascular development of 
phase 1 reflects the zone of human retinopathy 

of prematurity, and the vasoproliferation of 
phase 2 reflects stage 3 of human retinopathy of 
prematurity (Fig. 1, 2, and 3).

SIGNA LING PATH WA YS IN VOLV ED IN 
OX YGEN-INDUCED R E TINOPATH Y

We study models of oxygen-induced retinopathy 
to identify signaling pathways involved in the 
pathogenesis of the phases of retinopathy of pre-
maturity in order to determine potential inter-
ventions in human retinopathy of prematurity. In 
our discussion of studies in animal models, 
phase 1 signifies vaso-obliteration in the mouse 
model of oxygen-induced retinopathy and de-
layed physiologic retinal vascular development in 
the rat model of oxygen-induced retinopathy. 
Phase 2 signifies vasoproliferation in both mouse 
and rat models of oxygen-induced retinopathy. 
Pathways affected by oxygen stresses in cell cul-
ture and oxygen-induced retinopathy include 
those involving hypoxia, oxidative signaling,27,28 
inflammation,29,30 and poor postnatal growth or 
extrauterine growth restriction.20 Interactions 
and overlap among the pathways, especially 
those that involve hypoxia, oxidative signaling, 
and inflammation, affect angiogenesis and the 
occurrence of oxygen-induced retinopathy.31 
Other stresses, such as hypercapnia, acidosis, 
and systemic infection, cause retinopathy in the 
absence of oxygen stress and have also been 
studied.18,32,33

In phase 1 retinopathy of prematurity, a con-
cern is that the expressed goal to use strategies 
that enhance physiologic retinal vascular devel-
opment might worsen the second, vasoprolifera-
tive phase, depending on the timing of treat-
ment. In addition, inhibition of vasoproliferation 
in phase 2 can lead to persistent avascular reti-
na, which itself can stimulate subsequent vaso-
proliferation, as evidenced in studies of preterm 
infant eyes treated with bevacizumab for severe 
retinopathy of prematurity.34

Retinal Hypoxia

Retinal hypoxia is a major inciting feature in rat 
and mouse models of oxygen-induced retinopa-
thy. Hypoxia leads to stabilization and transloca-
tion of hypoxia-inducible factors (HIFs), result-
ing in transcription of angiogenic genes, 
including those that encode VEGF, cyclooxygen-
ase, erythropoietin,35 and angiopoietin 2.36 In 
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the mouse model, prolyl hydroxylase inhibitors 
administered during phase 1 to stabilize HIFs 
provided protection against vaso-obliteration and 
subsequent vasoproliferation in phase 237 but did 
not reduce vasoproliferation if administered dur-
ing phase 2.38

VEGF, an important survival factor,39 is criti-
cal for retinal vascular development. However, 
VEGF causes vasoproliferation in phase 2 in mod-
els of oxygen-induced retinopathy,38,40-43 charac-
terized by blood-vessel growth into the vitreous 
rather than into the hypoxic avascular retina, 
which itself produces VEGF. Both the mouse44 
and rat45,46 models of oxygen-induced retinopa-
thy — especially the latter, in which the periph-
eral avascular retinal area was measured and 
VEGF signaling inhibited — have aided in the 
understanding of the role of VEGF in retinopathy 
of prematurity. Results of studies in such models 
led to speculation that “excessive” VEGF signal-
ing not only caused phase 2 vasoproliferation but 
also appeared to contribute to avascular retina 
in phase 1.45,46 The use of a f lt-1−/− (VEGF recep-
tor 1 knockout) embryonic stem-cell model47 and 
subsequent use of VEGF-neutralizing antibodies 
or VEGF receptor 2 (VEGFR-2) tyrosine kinase 
inhibitors in the rat model of oxygen-induced 
retinopathy showed that VEGF signaling through 
VEGFR-2 caused disordered divisions of endo-
thelial cells and contributed to tortuosity and 
dilatation of retinal vessels, as seen in plus dis-
ease in severe retinopathy of prematurity.47,48 It 
is possible that the resultant disordered angio-
genesis might then allow endothelial cells to 
proliferate outside the plane of the retina into the 
vitreous and that the inhibition of VEGF would 
reorient proliferating endothelial cells and fa-
cilitate physiologic retinal vascular development. 
However, the dose is critical. A later study that 
used a beagle model of oxygen-induced reti-
nopathy showed that a high-dose, high-affinity 
antibody-based VEGF inhibitor led to persistent 
retinal avascularization.49

In other studies in the rat model of oxygen-
induced retinopathy, the JAK-STAT (Janus-asso-
ciated kinase–signal transducers and activators of 
transcription) signaling pathway was activated 
by VEGF in phase 150 and contributed to delayed 
physiologic retinal vascular development by re-
ducing the expression of erythropoietin.50 Intra-
peritoneal delivery of the Janus kinase 2 inhibitor 
AG490 or erythropoietin during the early postna-
tal period improved physiologic retinal vascular-

ization in a rat model of phase 1 oxygen-induced 
retinopathy.50 Activation of STAT3 by the oxida-
tive enzyme NADPH oxidase occurred in the rat 
model of oxygen-induced retinopathy after expo-
sure to supplemental oxygen51; inhibition of 
NADPH oxidase with apocynin52 or of STAT3 with 
AG49051 inhibited vasoproliferation in phase 2. 
The results of such studies suggest that inhibi-
tion of the JAK-STAT pathway may reduce patho-
logic features in both phases 1 and 2. However, 
JAK-STAT signaling protects photoreceptors from 
light-induced damage53; therefore, additional stud-
ies are needed and may require targeted inhibi-
tion of JAK-STAT signaling.

Nutrition and Extrauterine Growth 
Restriction

Insulin-like growth factor 1 (IGF-1) is impor-
tant in fetal growth, particularly during the 
third trimester of pregnancy.54 Premature in-
fants have insufficient production of IGF-1; 
without a placental supply, extrauterine growth 
restriction and delayed physiologic retinal vas-
cularization can occur. Infants with extrauter-
ine growth restriction are prone to severe reti-
nopathy of prematurity.55 Extrauterine growth 
restriction also exacerbates oxygen-induced ret-
inopathy.56 Administration of IGF-1 in growth-
restricted mice reduced oxygen-induced reti-
nopathy.57 These findings support the possible 
role of IGF-1 in reducing severe retinopathy of 
prematurity.

Other substances may also affect the devel-
opment of retinopathy. For example, in a rat 
model of oxygen-induced retinopathy, ghrelin, 
the appetite-stimulating hormone, reduced ret-
inopathy if it was administered during phase 
1,58 possibly through the induction of IGF-1 
and VEGF. The use of n−3 fatty acid supplemen-
tation during phase 1 may have provided pro-
tection against retinopathy in the mouse model 
of oxygen-induced retinopathy through sup-
pression of microglia-produced tumor necrosis 
factor α.59 Studies in rats with oxygen-induced 
retinopathy have shown that vitamin C and vi-
tamin E supplementation improves retinal vas-
cularization in phase 1.60 Finally, the dipeptide 
arginyl–glutamine administered in phase 2 re-
duced vasoproliferation by 82% in mice in as-
sociation with reduced VEGF expression, sug-
gesting that amino acid deprivation might be 
considered as a contributor to oxygen-induced 
retinopathy.60,61
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CLINIC A L IMPLIC ATIONS

On the basis of molecular mechanisms identified 
in animal models of oxygen-induced retinopathy, 
some translational considerations for retinopa-
thy of prematurity are presented below.

Antioxidants

Oxidative stress has long been associated with 
the development of retinopathy of prematurity, 
because the retina is rich in polyunsaturated fat-
ty acids that are vulnerable to reactive oxygen 
and nitrogen,62 and in preterm infants, the reti-
nal antioxidant reserve is not sufficient to pro-
vide protection against reactive compounds.63-65 
However, clinical trials that tested the efficacy of 
various antioxidants, including vitamin E, N-ace-
tylcysteine, and lutein, have been inconclusive or 
have shown unacceptable side effects in infants 
with retinopathy of prematurity.66,67 Studies of 
vitamin E supplementation in preterm infants 
were stopped because of sepsis and necrotizing 
enterocolitis, but a later meta-analysis of some 
studies suggested that vitamin E supplementa-
tion was associated with reduced stage 3 retinopa-
thy of prematurity.68 Thus, although it appears 
that oxidative stress promotes some aspects of 
severe retinopathy of prematurity, broad inhibi-
tion by antioxidants may not be safe.

Erythropoietin

Very-low-birth-weight infants are at high risk not 
only for retinopathy of prematurity but also for 
subsequent neurodevelopmental impairment. In-
terest in erythropoietin as a neuroprotective 
agent is increasing. When administered in pre-
term infants, erythropoietin was associated with 
improved cognition in childhood.69 Laboratory 
studies have shown that early administration of 
erythropoietin reduced phase 1 avascularization 
in both mouse and rat models of oxygen-induced 
retinopathy.50,70 However, retrospective studies 
have shown an association between erythropoi-
etin and severe oxygen-induced retinopathy in 
preterm infants.71,72 Erythropoietin was also 
found to promote intravitreal angiogenesis in a 
transgenic mouse model of oxygen-induced reti-
nopathy.73 Some investigators have proposed ad-
ministering erythropoietin early in preterm in-
fants to promote physiologic retinal vascular 
development and attempt to reduce the risk of 
development of stage 3 retinopathy of prematu-
rity, but additional studies are needed to deter-

mine the window of time for relatively safe ad-
ministration.

Anti-VEGF Agents

The Bevacizumab Eliminates the Angiogenic 
Threat of Retinopathy of Prematurity study, 
which compared intravitreal administration of 
the monoclonal anti-VEGF antibody bevacizumab 
(0.625 mg in 0.025 ml of solution) with laser 
therapy, showed improved outcomes with beva-
cizumab only for zone 1, stage 3 retinopathy of 
prematurity with plus disease.12 Since publica-
tion of that report, other studies have shown se-
rious side effects of anti-VEGF agents in some 
patients with retinopathy of prematurity, includ-
ing progression to stage 5 disease (total retinal 
detachment), persistent peripheral retinal avas-
cularization, and recurrent intravitreal angiogen-
esis observed even 1 year after treatment.34 The 
dose of anti-VEGF agent that can reduce severe 
retinopathy of prematurity without adversely af-
fecting ocular development or the development 
of other organs in the preterm infant remains 
unknown. Intravitreal bevacizumab at a dose of 
0.25 mg or 0.5 mg can enter the bloodstream of 
preterm infants and has been reported to depress 
serum VEGF levels for 2 weeks, raising concern 
about potential adverse effects on developing 
organs.74 Side effects are difficult to assess, be-
cause infants in whom severe retinopathy of pre-
maturity develops often have neurologic and 
other developmental issues. Thus, the use of 
anti-VEGF agents to reduce severe retinopathy 
of prematurity may be promising, but addition-
al studies regarding drug doses and their tim-
ing, the type of anti-VEGF agent, and safety are 
needed.

Nutrition

The algorithm WINROP (weight, IGF, neonatal 
retinopathy of prematurity) uses several factors, 
including serum IGF-1 levels and sequential post-
natal weight gain, to evaluate the individual risk 
of severe retinopathy of prematurity. WINROP has 
been simplified to study poor postnatal weight 
gain as an indicator of a high risk of severe reti-
nopathy of prematurity.75 In the United States, the 
WINROP algorithm was reported to have 98% 
sensitivity for identifying high-risk infants.76 How-
ever, in a Mexican patient population, the WINROP 
algorithm correctly predicted severe retinopathy 
of prematurity in 84.7% of extremely preterm 
infants and correctly identified only 26.6% of in-
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fants in whom severe retinopathy of prematurity 
did not develop,77 findings that highlight poten-
tial differences among preterm infants with reti-
nopathy of prematurity in different regions of the 
world.78 Nonetheless, in populations in which 
WINROP has been validated, its use may reduce 
the burden of screening. This is an important 
consideration, given the growing number of pre-
term births worldwide and the insufficient num-
ber of ophthalmologists trained to screen infants 
for retinopathy of prematurity.78

SUMM A R Y

Models of oxygen-induced retinopathy have elu-
cidated how oxygen stresses may lead to the de-
velopment of retinopathy of prematurity through 

activated signaling pathways. Screening is cur-
rently carried out according to the guidelines in 
Table 1. Current treatment for severe retinopathy 
of prematurity focuses on laser therapy and vi-
sual rehabilitation, and potential new treatment 
strategies include targets within oxidative path-
ways, erythropoietin, and anti-VEGF agents.
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